About this blog

This weblog is part of the OpenCourseWare project of Delft University of Technology. We will inform you about updates of OCW-website and other interesting things around OpenCourseWare.

OCW Consortium


Visit other Opencourseware sites from around the world.

Facebook

Posted in August 2014

Een bachelor cursus TBM gepubliceerd: introductie in energie- en industriesystemen

Deze week een nieuwe bachelor cursus van TBM gepubliceerd: introductie in energie- en industriesystemen.

Electric power lines

Vakinhoud
Introductie van de structuur en het gedrag van de massa- en energienetwerken die de ruggengraat vormen van de economie. De belangrijkste energie- en industriesystemen worden vanuit verschillende perspectieven besproken.

• Kaartkennis van energie- & industriesystemen, met name in Nederland
• Voorraden en stromen, elektriciteitsinfrastructuur, elektriciteitstransport, aardgasinfrastructuur, drink- en afvalwater, industrie, warmte- en CO2-netwerken, toekomstige energie- & industriesystemen
• Vraag- en aanbodfluctuaties, balanshandhaving
Leerdoelen
• De behoudswetten van massa en energie te reproduceren en een stationaire massa- of energiebalans op te stellen
• Energie- & industriesystemen te beschrijven en ontleden in functionele eenheden, hiërarchische niveaus en netwerken
• Eenvoudige analyses van energie- & industriesystemen op te zetten en uit te voeren
• Interacties en afhankelijkheden tussen energie- & industriesystemen met verschillende tijdconstanten te beschrijven
• De kritische functies in energie- & industriesystemen voor de economie en de natuurlijke omgeving te beschrijven

 

Published a new master course: Mechatronic System Design

Last week a new master course of Mechanical Engineering has been published: Mechatronic System Design.

mechatronic2

 

Course Contents

Mechatronic system design deals with the design of controlled motion systems by the integration of functional elements from a multitude of disciplines. It starts with thinking how the required function can be realised by the combination of different subsystems according to a Systems Engineering approach (V-model).

Some supporting disciplines, like power-electronics and electromechanics, are not part of the BSc program of mechanical engineers. For this reason this course introduces these disciplines in connection with PID-motion control principles to realise an optimally designed motion system.
The target application for the lectures are motion systems that combine high speed movements with extreme precision.
The course covers the following four main subjects:

Dynamics of motion systems in the time and frequency domain, including analytical frequency transfer functions that are represented in Bode and Nyquist plots.
Motion control with PID-feedback and model-based feedforward control-principles that effectively deal with the mechanical dynamic anomalies of the plant.
Electromechanical actuators, mainly based on the electromagnetic Lorentz principle. Reluctance force and piezoelectric actuators will be shortly presented to complete the overview.
Power electronics that are used for driving electromagnetic actuators.
The fifth relevant discipline, position measurement systems is dealt with in another course: WB2303, Electronics and measurement.
The most important educational element that will be addressed is the necessary knowledge of the physical phenomena that act on motion systems, to be able to critically judge results obtained with simulation software.
The lectures challenge the capability of students to match simulation models with reality, to translate a real system into a sufficiently simplified dynamic model and use the derived dynamic properties to design a suitable, practically realiseable controller.
This course increases the understanding what a position control system does in reality in terms of virtual mechanical properties like stiffness and damping that are added to the mechanical plant by a closed loop feedback controller.

It is shown how a motion system can be analysed and modelled top-down with approximating (scalar) calculations by hand, giving a sufficient feel of the problem to make valuable concept design decisions in an early stage.
With this method students learn to work more efficiently by starting their design with a quick and dirty global analysis to prove feasibility or direct further detailed modelling in specific problem areas.

 

© 2011 TU Delft